A

/

e

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

a
\

a ¥

/,

[\

S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

TRANSé(FZTIONS SOCIETY

PHILOSOPHICAL THE ROYAL

The Scattering of a Scalar Wave by a Semi-Infinite Rod of
Circular Cross Section

D. S. Jones

Phil. Trans. R. Soc. Lond. A 1955 247, 499-528
doi: 10.1098/rsta.1955.0004

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand
corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1955 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;247/934/499&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/247/934/499.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

[ 499 ]

THE SCATTERING OF A SCALAR WAVE BY A SEMI-INFINITE
ROD OF CIRCULAR CROSS SECTION

By D. S. JONES
Department of Mathematics, Unversity of Manchester

(Communicated by M. J. Lighthill, F.R.S.—Received 9 June 1954)
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Eé The form of the exact solution for the scattering of a plane harmonic scalar wave by a semi-
o= infinite circular cylindrical rod of diameter 2q is found when the boundary condition is #=0 or

duldv =0, where u represents the scalar field and v is the normal to the rod.

When the angle of incidence is 7, i.e. the angle between the direction of propagation of the
incident wave and the normal (out of the rod) to the end is 7, the average pressure amplitude
on the end of the rod and the scattering coefficient are found for the boundary condition du/dv=0.
Graphs are given showing the behaviour of these quantities for the range 0 <ka <10, where £ is
the wave-number. When ka reaches 10, the quantities have almost become constant. For small
values of £a the scattering coefficient is shown to be }(ka)?; it appears from the numerical results
that this is, in fact, a fairly close approximation for ka < 2.

It is further shown that the average pressure amplitude on the end for other angles of incidence is
approximately the product of the average pressure amplitude for an angle of incidence of 7 and
the amplitude of the symmetric mode (k2 <3:-83) which the incident field would produce inside
a hollow semi-infinite cylinder occupying the same position as the rod.

When the boundary condition is =0 and ka is small it is proved that the scattered field is the
same as that due to a semi-infinite hollow cylinder longer by an amount 0-la approximately.
A similar result does not hold for the boundary condition du/dv =0.

The theory is extended to the case when a pressure pulse falls on a circular rod. It is found that
the pressure on the end drops almost to its final value in the time taken for a wave to travel the
diameter of the rod, and that the average pressure during this process is given, at time ¢, by
{0-9154-0-745(2 — ayt/a)%}} approximately, where q, is the speed of sound.

Tables, in the range 0(0-25)10 of ka, of the ‘split’ functions which arise in connexion with a
semi-infinite cylinder are given.
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InTRODUCTION

An exact solution of the problem of the scattering by a dielectric cylindrical rod of finite
length is not known, although this problem is of importance in light-scattering experi-
ments, the design of antennae and the design of microphones. When the length of the rod
is infinite the solution is well known, but our theoretical knowledge of the scattering due
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500 D. S. JONES ON THE SCATTERING OF A SCALAR WAVE

to finite obstacles in three dimensions is essentially limited to those of ellipsoidal shape.
(For two-dimensional obstacles information has recently been published (Jones 1953a)
concerning the scattering by impenetrable rectangles.) However, it is possible to make
some progress by the introduction of various simplifications. The first simplification is to
make the rod semi-infinite in length. This restriction is not so severe as appears at first
sight, since it is frequently possible to predict the behaviour of finite obstacles from that of
semi-infinite obstacles (see, for example, Jones 19524 and Williams 1954.a).

The second simplification is to assume that the fields cannot penetrate the rod, i.e. the
boundary condition on the rod is either # = 0 or du/dv = 0; this is often physically reason-
able. More account can be taken of the dielectric nature of the rod by using the boundary
condition du/dv+ ou = 0; the author hopes to consider this in the near future.

The first boundary condition which is considered is du/dv = 0; this corresponds to the
problem of small-amplitude sound waves falling on a rigid rod. The problem when the
angle of incidence is 7 is examined in some detail numerically, the angle of incidence being
the angle between the direction of propagation of the incident wave and the normal (out
of the rod) to the end. The average pressure amplitude on the end is found to be related to
one of a set of constants which satisfy an infinite number of equations. Three approxi-
mations have been made in which it is assumed that only one, two or three of the constants
are non-zero. The results of the second and third approximations scarcely differ, so that it
may be assumed that they give a close estimate of the average pressure amplitude but no
analytical justification is attempted. A variational method of still further improving the
approximation is given but no advantage of this has been taken in the numerical work.

The second and third approximations show that the average pressure amplitude rises
steadily, as ka increases, from the value 1 (the pressure amplitude in the incident wave
being 1) when ke = 0 to a maximum of 2:18 when k¢ = 2-4 and then oscillates with
~ decreasing amplitude about the value 2.

The same three approximations have also been used to determine the scattering coeffi-
cient. For small values of ka the scattering coeflicient is effectively }(ka)2. It increases
steadily with ka (very nearly like %(ka)2) up to a maximum of 1-14 at ka = 2-5 and there-
after oscillates slightly about the value 1. For ka>> 3 the scattering coefficient is almost half
the scattering coeflicient for a rigid disk of diameter 24. The difference of a halfis accounted
for by the fact that the field can be diffracted round behind the disk, but this is not possible
for the rod.

When the angle of incidence is not 0 or 7 it is shown that, to a first approximation (which
is better the smaller £a), the average pressure amplitude on the end of the cylinder is the
product of the average pressure amplitude when the angle of incidence is 7 and the ampli-
tude of the symmetric wave that is produced in a hollow semi-infinite cylinder occupying
the same position as the rod. The solution for the hollow semi-infinite cylinder has been
given by Levine & Schwinger (1948a). This result has been used to draw graphs of the
average pressure amplitude for various angles of incidence in the range 0<ka<3-5. The
approximation would not be expected to hold outside this range and, in any case, the pres-
sure can be estimated on the basis of geometrical optics for ka>4 when the incident wave
‘illuminates’ the end of the rod. As the angle of incidence decreases from 7 to 17 the first
maximum of the average pressure amplitude decreases and occurs nearer to ka = 0, being


http://rsta.royalsocietypublishing.org/

A A

j A Y

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

' \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

BY A SEMI-INFINITE ROD OF CIRCULAR CROSS SECTION 501

1-1 at ka = 1-25 for an angle of incidence of 27. For angles of incidence less than 37 the
average pressure amplitude drops steadily from its value of 1 at ka = 0 as £a increases. One
curious feature, for which the author has no explanation, is that the average pressure
amplitude for an angle of 7 is greater than that for iz for all kg under consideration.

The second boundary condition which has been considered is # = 0. This has not been
examined in such detail numerically as the preceding boundary condition, not because
it is less important but because there was a limit to the computation the author was pre-
pared to undertake. The boundary condition # = 0 is appropriate to the antenna problem
in so far as it is permissible to regard the component of the electric intensity parallel to the
axis of the rod as the only important component. It is shown that the cylindrical rod of
small diameter behaves as a cylindrical tube of the same diameter but longer by an amount
0-1a as regards the distant field that is produced. This means also that the current along
the rod at some distance from the end is the same as that of the longer tube. (No wave
propagates inside the tube which is beyond cut-off.) It follows that a non-resonant rod of
finite length of small diameter may be treated, as regards the current at its centre and the
radiated field, as a tube of slightly longer length. Such an approximation should be better
than the standard method of replacing the rod by a line source and applying the boundary
condition on the surface of the rod. The solution for the finite tube may be obtained in a
similar way to that used by Williams (1954.6) for sound waves.

It should be noted that, although the analysis estimating the extra length is only strictly
valid for diameters less than 4%; wave-length, the theory and experiment for a thick plate
did not differ by more than a factor of 2 for a thickness of a half wave-length, and so it is
possible that like results may well hold in this case. (The agreement is not likely to hold for
such a wide range in the particular application to the antenna problem, because the effect
of other components of the electric intensity becomes more significant as the diameter of
the end increases.)

There is no comparable result that the small-diameter rod is equivalent to the longer
tube when the boundary condition is du/dv = 0. This is because the normal derivative of the
first-order cylindrical harmonic of the incident field is as large on the cylindrical surface
as that of the zero order harmonic when £q is small; the effective lengthening for the two
harmonics is different. :

It is possible to deduce, from the analysis required for the above problems, the average
pressure due to a pressure pulse falling on a rigid rod. It is found that the main pressure
drop takes place while the waves first diffracted at the edges are spreading across the end
of the rod. During this time the average pressure on the end is {0-915+-0-745(2—a, t/a)?}*
when the pressure in the incident wave is unity. The result also holds for finite cylinders
whose length is greater than the radius and also for a semicircular obstacle on a rigid plane.
This last problem is related to that of finding the force on a Nissen hut due to a weak shock
wave travelling along the earth.

The technique used in solving the problem of the semi-infinite rod is the same as that
which the author has already used in connexion with the diffraction by a thick plate
(Jones 19534). We first obtain the solution for the boundary condition du/dv = 0 when the
angle of incidence is not 0 or 7 and deduce from it the solution when the angle of incidence

is 7. The next section is concerned with the boundary condition « = 0.
62-2


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

502 D. S. JONES ON THE SCATTERING OF A SCALAR WAVE

In § 4 are obtained expressions for the distant field, and, in § 5, formulae for the average
pressure amplitude and scattering coefficient are found. § 6 is devoted to obtaining varia-
tional expressions for some of the quantities to be computed.

The behaviour of the distant field when £k2<1 and the boundary condition is # = 0 is
considered in §7, the results being interpreted in the manner already described. The
behaviour of a pressure pulse is discussed in § 8.

The last section carries an account of some approximations which were used in com-
putation and also occasionally in the text. An appendix contains properties of various
functions occurring and references to it are indicated by (A1), for example, meaning
equation (1) of the appendix.

1. THE BOUNDARY CONDITION Ju/dv=0 WHEN THE ANGLE OF INCIDENCE IS NOT 0 OR 7

Let p, ¢, z be cylindrical polar co-ordinates and let the semi-infinite rod occupy the space
p<a, z<0. Let the incident plane wave « be given by

u® = exp (—ikpsind cos g —ikz cos0),

where 0 <0 <7 and k£ = 27/(wave-length). The field that is produced by this plane wave

falling on the rod must satisfy Vi k2 — 0 (1)
U U =0,

where Vi=

19 dy, 19 ¢
35 0 3) o
and be such that du/dv = 0 on the surface of the rod.
The expression for #® may be rewritten

u©® — e-ikzcos() §: ule)(p) Cin¢’ (2)
where 4 = e~¥ J (kpsin @), J, being the Bessel function of the first kind and nth order.
The field » which would be reflected if the cylinder occupied the whole of p <a, —00 <z <00
is given by .

u) = e—ikzcos0 z uszl)(p) ein¢’ (3)

n=-—o

i Ja(kasind) .
(1) — dinge 0\ 7777/ (@)
where uPp) =e HO (kasind) H® (kpsinf),

where H? is the Hankel function of the second kind and nth order and primes indicate
derivatives with respect to the argument. It is clear that

0u®/dp = duM/dp (4)
on p = a for all z.
Let the total field be given by
u®— - u(/o’ ¢’ Z) in p=>a,
u(p, ¢, 2) in p<a, z>0,
0 in p<a, z<O.
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BY A SEMI-INFINITE ROD OF CIRCULAR CROSS SECTION 503

Both #® and «( satisfy (1) and hence u satisfies (1). The other conditions to be satisfied
by u are

(i) du/dv = 0 on the surface of the rod on account of (4) and the assumed form of the
total field;
(ii) du/dp is continuous across p = a for all z except possibly z = 0;
(iii) the total field is continuous except possibly across the surface of the rod;
(iv) u~const. e [rasr = (p?+2z%)*>o0inp>aand u ~ const. e~#2¢0 a5z >00 inp<a;
(v) u = const.+0(a@%), |gradu| = O(w™*) as w— 0, where @ is the distance between
apointof p =a,z=0 and a point of observation with the same ¢.

These conditions are sufficient to ensure a unique solution (Jones 1952 4; Meixner 1949).

We assume, for analytical convenience, that k£ = k,—ik; (k,>0, £;>0) and then allow
k;— 0 when the analysis is complete. That such a process leads to a solution of our problem
may be verified a posteriori. In the corresponding problem when the boundary condition is
u = 0 this verification is not necessary because, in this case, the spectrum of — V2 is con-
tinuous (see theorem 9 of Jones 1953 5).

Let s be the complex variable ¢+-ir and define U(p, ¢, s) by

Ulp, 4,s) = f " ulp, 4,2) e=5=dz.

—00

It follows from (iv) that U is analytic in the strip —£;cos <o <k;.
Define u, and U, by

W) =5 08,2 9g, Up,s) = o [ Ulp g9 e

Then, since u satisfies (1), it follows from (i) that

1d/ dU, n? ‘

,adp( dp)+(K _Iﬁ)Un:O (p>a),
= 3.(p)  (p<a),

where f,(p) = lim u, and «* = s2+£2 Equations (5) hold in the strip —k;cosf <o <k;.

z—>40
We specify « by choosing that branch of (s2+4£2)! which reduces to £ when s = 0. Then « has
a negative imaginary part in the strip —&;, <o <k;.
The solution of (5) in p>a which complies with (iv) is _
U(p,5) = Qu(s) HP (kp) [k, (6)
where @, (s) is independent of p.

In p<a choose the particular integral which is bounded and whose derivative vanishes
on p = a. Then the bounded solution of (5) in p<a is

()

Uylps) = (LT (ka)} P, ()T, (k0) e 1,0 (0, ) ), )

where 2ty p) = m{J,(ka) Y, (kp) — Y, (ka) J,(kp)} T ,(kt) (0<t<p),
— () (ka) Y, (kt) — Yi(ka) T, (c)}J, (kp)  (p<t<a),
Y, being the Bessel function of the second kind and nth order.
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504 D. S. JONES ON THE SCATTERING OF A SCALAR WAVLE
The combination of (ii) and (v) shows that U(p, ¢,s) is continuous across p = a and

d . .
hence P U,(p, s) is continuous across p = a. Hence we have, from (6) and (7),

Qn(s) HP' (ka) = By(s)-
Therefore U,(p,s) = P,(s) H®(kp) [k HP' (ka) (8)

in p>a and a%(/;,(a, s) = P,(s). But du/dp = 0 on p = a, z<0 by (i) and so

2w 0
P (s) = —Q!;Tfo e-ing d¢fﬂ 3% u(a, ¢, z) e~**dz.

Hence P,(s) is analytic in > —k,cos . If the domains 0> —k;cos 0, ¢ <k, are designated
the positive and negative half-planes respectively it can be said that P,(s) is analytic in the
positive half-plane.

In p <a, u vanishes for z< 0, and hence U, (p, s) must be analytic in the positive half-plane.
Therefore the right-hand side of (7) must not have poles at the zeros of J,(«xa) which lie
in the positive half-plane.

Let Jo(jom) =0 where j,.>j ., and j,=0.
Write =72 /a®—k?,
and define «,,, when £, = 0, to be positive when real and positive imaginary otherwise.
It then follows that Rk Y=k, Ik, )<k

the equality holding only when m = 0. Hence the zeros of J,(ka) in the positive half-plane
are s = K,,, (m=0,1,...).
In order that U,(p, s) shall be analytic in the positive half-plane it is necessary that

S B) ) e Vi) F2) [ 10 0 )~

n

The equation is automatically satisfied when m = 0, == 0. In the other cases

B(ku) = Wtjsnn i) [ (0007, Gt . (9)

This relation gives the coefficients of an expansion of f,(at) in a Dini series (Watson 1944).
The Dini coefficient f,,, is defined by

_ I
Jom = (2, —n?) Jz(]nm)f tf(at) J,(Jumt) At (n+m==0), (10)
Soo =200, tfiat) at, ()
where 8 =10 (n=m), =1 (n=m).

Now, with fixed p, £, (at, p) is of bounded variation and continuous for 0<<¢/< 1. Hence the
Dini series (multiplied by #) for p,(at, p) is uniformly convergent to #p,(at, p) in the closed
interval (0, 1). Thus it may be multiplied by #}/,(at) and integrated term by term over any
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range in (0,1). This process gives the same result as when the Dini series associated with
Jn(at) is multiplied by #p,(at, p) and integrated term by term. Hence

1 1 © 1
[ttt putat g de = o | fatp) et 3 S [ tpilatp) S Gt (12)

We derive from (9), (10) and (11)

~ ]7;?7an( nnl) n
nm ’ 7 +m=0), 13
Son = o) () EEO) 12)
Joo = 205, Fy(ik) /aik, (14)
since T Gnm) YolJnm) = 2/ Tfnme

Equation (12) can be used to evaluate the integral in (7). The evaluation requires the
formulae

[ 6,008 0m0) dt = 510, (1) () —8,(1) 6, (1)}

where €, €, are any two cylinder functions of order # (Lommel 1879) and

Jo1(2) Y, (2) = X,41(2) J,(2) = 2/mz
(Lommel 1871). The resulting expression for U, (p, s) is given by

U, (p,s) = P/SJ)"(] (’;/’)+ mzofnm*siz (]nmp/a) (p<a). (15)

Conditions (iii) and (v) imply that

. ey (@) —wP(@) (7 oz
pl_l’ﬁo . u,(p, z) e~ dz+ “srikcosd —pgﬂo . Uy (p,z) €% dz

= lim U,(p,s), (16)
p—>a—0

since #, = 0 in z<0, p<a. Hence

lim U,(p,s) = N.(s)+ lim | u(p,2)e=>dz

p—>a+0 p—>a+0J 0
_ : v(a)
- Nn(‘y) + plil:l_OUn(pa S) ~S+lk cosf’
' 0
where N,(s) = lim u,(p,z) es2dz
p—~>a+0v —
and vP(a) = u?(a) —ull(a) = —2ie " [{nkasin OHP' (kasin6)}.

The function N,(s) is analytic in the negative half-plane.
Substitution for U, from (8) and (15) gives

_ 26(s) v (a) 2 Sumd n(Jnm)
No(s) ak?K® (s )+s~|—1k cosf mzo s2—x2 (17)
where K®(s) = —mid, (ka) H?'(ka).

It is shown in the appendix that K®(s) can be written as K@ (s)/K{(s), where K@, K
have no zeros or singularities in the positive and negative half-planes respectively. Further
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506 D. S. JONES ON THE SCATTERING OF A SCALAR WAVE

KP(s) KP(—s) =1, from (A 8), and KP(s) ~(as)~* as |s|—co in the positive half-plane
(A 4).

Equation (17) can now be rewritten as

(s—ik) N,(s)  oP(a) (s—ik  ik(1+cosf)
KP(s)  stikcosd {K‘"’ (s) TK®(— ik cos 0)}
2 SumS—IR) Sy (Jum) | 2 SamIn(nm) [$—1k K1k )
NS =y AR (e A IO ()

— 2Pn (S) - lk(l +cos (9) ?}gll)(d) g ( Knm + lk)j;zm 'Jn(.]v;m)
a(s+ik) KP(s)  (s+ikcost) K@ (—ikcost) ' 50 2(s+ Kpm) K& (—Kpm)

Since P,(s) = O(s7%) as |s|—oc0 in the positive half-plane (on account of condition (v)),
Jom = O(m™*) as m—oco. Thus the infinite series in (18) are absolutely convergent for all s
except +«,,

The left- hand side of (18) is analytic in the negative half-plane, whereas the right-hand
side is analytic in the positive half-plane. Both sides have the strip —£;cosf <o <k; in
common and hence must equal an integral function. As | s | =00 in the negative half-plane
the left-hand side is o(s*). As | s | =00 in the positive half-plane the right-hand side is o(s7%).
Hence, by the extension of Liouville’s theorem, the integral function must be the constant
zero. Therefore

. (18)

2B(s)  _  ik(1+tcos®)vuiP(a) 3 (Kuw 1K) fumd n(Jum)
a(s+1ik) KP(s) — (s+ikcosO) KP(—ikcosl) ,502(5s+ Kpm) KP(—K,)
B ik(1+cos ) v'P(a) _ 2P(ik) 4y,
~ (s+ikcosO) KW (—ikcosl) a(s+ik) K@ (—ik)
< (K 1K) JoiEo (K )

_mzl aKnm(jflz?n -—722) (S_I—Knm) K(n)( Knm) ’
after a use of (13) and (14).
Let a, = %ﬂa/c(l +cos 19) v(l)(a) K® (ik cos 0),

o = i RO ) )

gt — — i (iR) [P (—ik),
2, =0 (n=0).

Then the equation for P,(s) becomes

- 7nl)n (S) — %y . 30n %o %oo § %y anm (1 9)
(s+ik) K@ (s)  s+ikcost  s+ik  ,Z15+k,,
The constants «,, may be determined by putting s = «,,, (m =0,1,...) in (19). This

process leads to the following equations for «,,

’ - 1 é\ona()() nm o ¢
anra"r—KmﬁLikCOSﬁ__K +1/€ mzlknr+Knrn (7_O,1>-~-)9 (20)
12 ___p2
where o 26y (Jur— 1) (n+r=0),

(o (Kt 1K) KP (1,
oy = 1/20R{KD (ik)}2.
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We require a solution of our problem such that P,(s) = O(s™*) as | s | =00 (condition (v)),
which means that we need a solution of the equations (20) such that «,,, ~m=* as m—>co.
In addition, by deforming the contour to the right we may show that

J‘“i“’ P(s)ds 0

o-ioo (54-1F) K (s)

where —£;cos  <c<k; Hence we must have
aOnaOO—i_ 21 X = L. (21>
m=

The function U,(p, s) is known from (8) when the function P,(s) is given, and hence, by
the use of the Mellin inverse, the function #,(p, z) can be obtained when P,(s) is known.
The form of the solution is now known, being given essentially by (19), and the solution is
known precisely as soon as the equations (20) are solved for the constants «,,,,.

It may be remarked that we can obtain the solution for the hollow semi-infinite cylinder
merely by putting «,,, = 0 (all z and m) in (19).

2. THE BOUNDARY CONDITION 0%/dy=0 WHEN THE ANGLE OF INCIDENCE IS 7

In this section we take the incident wave to be ei*2, The total field is assumed to be

elfz 4y in p>a,
efzfe k2 4y in p<a, z>0,
0 in p<a, z<0.

Then u is independent of ¢ and satisfies conditions (i) to (v), except that in (iv) u ~e~i*2/z
as z—>00 in p<a. Consequently the analysis of the preceding section with # = 0 may be used
as far as equation (15). Equation (16) will remain valid provided that § = 0 and

u(a) —ull(a) = —1.
With this modification the analysis can be carried through as before. Hence

P(s) HP (x .
Ulp,s) = w(’z)Hf;yE;% n p>a

_ P hp) | 3 hulolisnela)

kJy(ka) meo  $2—K3,

in p<a,

where U(p,s) :=f00 u(p,z) e=szdz, h, = _2P(Kon)

—© " @Ko Jo(Kom)

hy = 2P(ik)/aik), (22)

—miPs) _1=fy 3 fa
Bols+1k) K@ (s) — s+ik 21 5+ko,°

where fo = —makKQ (ik), (23)
ﬂ(,)/s)m = _"%ﬂl(lk—'_KOm) P(KOm) Kg))(KOm)/KOm' (24)

Equations for the constants 4, in terms of the value of « on the end may be obtained from
(10) and (11) by replacing f,,, by 4,

(m=+0),

and

Vol. 247. A. 63


http://rsta.royalsocietypublishing.org/

L

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

%

A B

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

508 D. S. JONES ON THE SCATTERING OF A SCALAR WAVE

The equations for the constants f,, are

2K0rﬂr 1 ~ﬂ0 . ﬁm —
{(ko, +1k) K© (10,32 KOr—I—ik P (r=0,1,...). (25)

The solution is now in the same form as that for the preceding problem.

3. THE BOUNDARY CONDITION #=0

In the discussion of the boundary condition « = 0 we shall restrict the analysis to those
cases in which the angle of incidence is not 0 or =, i.e. we shall take the incident wave
to be u©.

I et u(Z) . e—-iszosO Eoo: u;?(ﬂ) eing’:’
- J,(kasin0) .
(2) — e—tinm Tn\"TT T ) FJ(2)
where uP(p) =e HO (Fasin 0) HP? (kpsin0).

Then «® = uPonp = a.
Let the total field be given by
U0 —u@+4u(p,,z) in p=a,
u(p, ¢, 2) in p<a, z=>0,
0 in p<a, z<0.
Then u satisfies (1) and the conditions
(1)" u = 0 on the surface of the rod,
(i1)" u is continuous across p = a for all z except possibly z = 0,
(ii1)” grad u is continuous except possibly across the surface of the rod,
(iv)" the same as (iv),

(v) u= O(at), |gradu| = O(w™*) as w—>0.
The equation for U, (p, s) is
1d/ dU, , N
,;‘ap( d,o)+(K “?) =0 (”>“)’} (26)
=&(p) (p<a),

where g,(p) = lim du,/0z.
z—>+0
It follows from (i)’ (ii)" and (26) that

U (p,5) = R, (s) HP(kp)HO (xa), (r>a) (27)
= {1/, (ka) }{R,(5) T, (xp) + f 1g,(2) ¢,(,p) dt}  (p<a), (28)
where 7,(4,p) = $n{J,(ka) Y, (kp) =Y, (ka) J,(kp)} J,(kt) (0<t<p)

wMWH)YW(WMw@@@-
The function R, (s) is analytic in the positive half-plane. U,(p,s) must be analytic in the
positive half-plane and therefore (28) cannot have poles at zeros of J,(«a). Let J,(j,,.) = 0,
where j,,,>J, -1 and j,, = 0. We define j,, = 0 although it is not a zero of J,. Write

A2, = j2,/a>—k? and define 4,,,,, when £; = 0, to be positive when real and positive imaginary

otherwise. Then RN, )=k, S
the equality holding only when m = 0.

<k,

nm)
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Hence R, (Ayn) 1) 77, un) S itl) [ (8 i)t = 0,

when m>0, n>0, or m=0, n = 0. The equation is satisfied identically when m = 0, n>0.
Consequently

1
R, () = %ﬂaZYn(jnm)f tg,(at) J,(Jum ) dt - (m = 1,2,..).
0

This relation gives the coefficients in the Fourier-Bessel expansion of g,(af) (Watson
1944). By an argument similar to that of § 1 it can now be shown that

i) = ™+ 5 gt (oo (29)
where Eum = jg:lg(};m) Jl tgn(at) J;z(Jnm t) ds

a ”]n+l(‘]nm)
Conditions (iii)" and (v)’ imply that

(e u0' (@) —u®' (a) . (0w,
1 he-szdy L Sn T /= 1 ne-szd
p—ig-l() 0o 0p + s+ lk cosf p_>lar_r.10 0 d € z
= lim U,,
p—~>a—0

where U, = dU,/dp. Hence
lim U, = N,(s)+ lim U,—v?(a)/(s+ikcos?),

p—>a+0 p—>a—0
, . O du
where N,(s) = lim —2eszdz
p—~>a+0 810
and v2(a) = ul® (a) —u?’(a) = 21 et |nkasin OH P (kasin 0).

N, (s) is analytic in the negative half-plane.
It follows from (27) and (29) that

4 7}%2)(61)_ —_ 2Rn( ) gnm]nm‘]/(]nm)
Nol) = ik cost ~ ~alo(s) z Aty
where Lo(s) = —mid,(ka) H? (ka).

It is shown in the appendix that L®(s) can be written as L (s)/L{(s), where LE, LY
have no zeros or singularities in the positive and negative half-planes respectively. Further
Ly (s) LP(—s) =1 (A11) and LY (s) ~(as)"t as | s| >oc0 in the positive half-plane (A 12).
In a similar way to thatin § 1 it is found that

2R,(s) _ v (a) s umJum T n(Jum)
al$(s)  (s+ikcos@) L (—ikcosl) = =1 2ad,,,(s+ ) L (=)
_ 2 (a) L% R
~ (s+ikcosf) L@ (—ikcosl) a21a%A,, LP(—A,,) (s+4,,)"
Let Y, = — ¥imav? (a) LY (ikcost), (30)

Vlum = Gig2h,, L9 (A,
63-2
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510 D. S. JONES ON THE SCATTERING OF A SCALAR WAVE

The equation for R,(s) becomes

_ﬂan(S): Yu . < YnVnm (31)
LP(s)  s4ikcosl =is5+4,,’°

and the equations to determine y,, are

QdZAm, Var . 1 3 Vam _
{jangl)(Anr)}z N Anr_'_ikCOSﬁ_mzl /lnr_}—Anm <r N 1,2, ) (32)

We require a solution such that R, (s) = O(s7%) as | s| -0 and hence a solution of (32)
such that y,,, = O(m~*) as m—o0. Also

J‘c+ioo ﬁn(s) ds _0
i LE(s) 7

and so % Vum = 1. (33)
m=1

It is to be noted that the solution for the hollow semi-infinite cylinder may be obtained
by putting y,,, = 0 (all n and m).

4. THE DISTANT FIELD
When the boundary condition is du/dv = 0 the field in the nth mode is given by

¢+io
_ Up,s) e=ds
c—iw®
1 c+io P (S) H(Z)(Kp) . X .
= ey _n\NT/ T n NI alkp @SZ—1kp
zﬂifc_iw H® (ka) 70 ds i p>a,

1
un(ﬂ? Z) = 2—,”1

where P,(s) is obtained from (19). The field at large distances from the origin may be ob-
tained by the saddle-point method of approximation.

Let z=rcosy, p=rsiny, where 0<y<m. The saddle-point of sz—ikp occurs at
s = —ikcos . The contour of integration may be deformed into the curve of steepest descent
through the saddle-point, care being taken to add the contributions of any poles which are
passed over. When ¢ is not near 0 or # it is easy to show that the curve of steepest descent
does not pass near s = +ik. Hence, as kr—>0c0, we may take

3
H(2)(K,0) eikp — (i) emi@n+i)
" mKp
on this curve. Consequently, as &7 —c0, the contribution from the curve of steepest descent is

iP(—ikcosy)  e-ikriing
wksin yH®' (ak sin ) ro

(34)

when ¢ is not near 0, § or 7.

When y <0 the contour is deformed over the simple pole s = —ik cos §. The contribution
from this pole is «{l’ e~1#2<os% which removes the reflected wave in the region ¢ <§. When
¥ is near ¢ the above approximation breaks down because the saddle-point is near a pole.
This difficulty may be overcome by the method used previously by the author (Jones 1953 @)
or by the more general method of Clemmow (1950) but will not be considered in detail here.
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There remains the question of the possible contributions from the poles due to the zeros
of H? (ka). It can be shown that H?'(z) has no zeros for 0>argz> —n. Now the curve of
steepest descent always lies in a region where 0> arg x> —, since it crosses from one sheet
to another of the Riemann surface of (s2+-£2)! when the contrary would occur. The contour
of integration can be deformed into the curve of steepest descent without leaving a region
in which 0>arg x> —7 and hence there is no contribution from the zeros of H?'(ka).

The distant field, when the boundary condition is # = 0, is

iR, (—1k cos ¢) e ikrtiinm
TH® (aksin ) ro 7

(35)

together with a term which removes the reflected wave in ¥ <4.

It has already been remarked that the field consists of that due to a hollow semi-infinite
cylinder together with a field due to the end of the cylinder obtained from the constants
a,,, and y,, respectively. When account of this is taken in (34) and (35) we see that the distant
field due to the end in the nth mode is

Oon %o %0 o, i(1—cosy) K (—ik cos y) e~ tkr+iinm

ik(1—cos¥) * m‘gl Koy ——nikncos vl wlsinyHP' (kasiny) r (36)
for the boundary condition du/dv = 0 and
Lp(—ikcosy) e M 2 Y Yum
PHD Fasnyg) 7 2L —ikcos (37)

for the boundary conditions # = 0. It is shown in § 6 that we can form equivalent expres-
sions which are stationary for small variations of the constants «,,, and y,, about their
correct values.

5. THE AVERAGE PRESSURE AMPLITUDE AND THE SCATTERING
COEFFICIENT FOR THE BOUNDARY CONDITION du/dv=0

We deal first with the case when the angle of incidence is 7. We assume that the pressure
amplitude in the incident wave is unity. Then the total pressure on the end of the rod is

27rfa Hu+2),-,dt,

0

and hence the average pressure amplitude, i.e. (total pressure)/(end area) is the modulus of
2 ’
2. tu-+2),_,ds.

It follows from (11), (22), (23) and (24) that the average pressure amplitudeis 2| 1—g, |.
The constant f, is obtained by solving the equations (25). This has been carried out
approximately by assuming successively

(i) f,=0 (m>0), (i) f,=0 (m>1) and (i) g, =0 (m>2).t

T It may be remarked that the boundary condition on the sides of the rod is satisfied whatever values are

taken for the f§,. Approximation for the f,, implies approximation to the boundary condition on the end
of the rod.
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512 D. S. JONES ON THE SCATTERING OF A SCALAR WAVE

The average pressure amplitude supplied by these three approximations is plotted against
ka in figure 1 for the range 0<<ka<10. The values of K¥(s) necessary for this computation
are given in table 2, p. 523.

All three approximations give the same qualitative behaviour for the average pressure
amplitude—a steady rise from 1 to a maximum near ka = 2-5, followed by an oscillation
about the value of 2. The second and third approximations differ by so little (less than 19,
over most of the range) thatitisreasonable to suppose that they give a fairly accurate estimate
of the amplitude. Thus the maximum pressure amplitude occurring is 2-18 at ka = 2-4.

- /’\\\
// """ -‘.\.\ —
L ! \."- L ~ - o ‘;;)._‘-,-,-_w_—,_g;_-.‘_.
/ N 7
- /] \\- // i
1-5H ]
| 7«0 N U N NN DN LN NN SN NS B W SR S S T M
’ l ’ ’ ! 5 10
ka

Ficure 1. The average pressure amplitude on the end of the rod when the angle of incidence is 7.
Approximations: . ..., first; ————, second; , third.

In §6 a variational expression is obtained for f,. It would be possible to improve the
above approximation by putting (say) f,, = 0 (m>2) in the right-hand side of equations
(25) and substituting the values of §,, (all m) so obtained in the variational expression.
However, in view of the close agreement between the approximations above, such a process
has not been attempted.

To determine the scattering coefficient let w(p, ¢, z) be the total field at any point when the
incident field is e'#2. Then the energy scattered by the rod is

Cf {(w—e"?) grad (w* —e~1#2) — (w* —e~1#2) grad (w—e'*#)}.dS,
N
where C'is a constant, the asterisk denotes a complex conjugate and .S'is the surface of a large

sphere at infinity apart from the portion removed by the rod, dS being along the normal.
Since w and e'*# satisfy V2w -+£?w = 0 the integral may be converted, by the divergence
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theorem, into one over the surface of the rod. A use of the fact that dw/dp = O on p = a, z<0
then shows that the scattered energy is

ikC f ‘ f " 0w, ¢, 0)— 2} pdpdg — 2mikC f * (2%u+2) pdp
0J0 0
— 2mikCa(1 —2728,).

The incident energy per unit area is 2ikC. Hence we have for the scattering cross-

section ¢,
scattered energy

~ incident energy per unit area
= mat(1—22f,);

the scattering coefficient ¢, = ¢,/ma? is given by

‘q

T T T T T T T T T T T T T T
— /2 —
//
1= L TR P
.’ y 7
— = -
0-5F -
S S S T T S TN Y S S TR B
0 1 2 3 4 5 10
ka
Ficure 2. The scattering coefficient when the angle of incidence is 7.
Approximations: .. .., first; ———, second; , third.

The scattering coefficient is plotted in figure 2 against £ka. It exhibits the usual shape
associated with diffraction phenomena, having a maximum of 1-14 at ka = 2-5.

For small ka we can estimate ¢; and ¢, by using the first approximate formula for f,.
(All three approximations agree in the range 0<<ka<C0-5.) This gives

6o = R2[1 -+ {K® (ik)}2] 1 —1

_ 1— [ {KP(ik)}? |2
14+22{KP (1K) + [ {KP (i)} 2

~ [ [{KP(i8) 12 7],
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514 D. S. JONES ON THE SCATTERING OF A SCALAR WAVE
since {K{?(ik)}?~1 when ka<1 (equation (A9)). Now K (ik) = e *I», where o = ka,
from (51) and hence | {K{(ik)}? |2 = e~2#/*0, Since
R0 = 15,0 = 20{l+0(1)}
as a— 0 from (60) it follows that co~ g0 = L(ka)? (38)

for small £ka. In fact equation (38) for ¢, agrees well with the numerical values of ¢, for ka < 2.

We now consider the average pressure amplitude on the end of the rod when the angle of
incidence is not 7. Let y, be the total field produced when an incident plane wave travelling
in the direction of the unit vector n, falls on the rod. Let y, be the total field produced when
the wave e~1## is energized at z = —oo inside a hollow semi-infinite cylinder occupying
p =a, z<0. Then

f (x;grad y,—x,grady;) .dS = 0,
S8+

where §'is the surface of the sphere r = R apart from the portion removed by the rod, S, the
surface p = a, z< 0 and S, the surface p<a, z = 0. Since dy,/dv = dx,/dv = 0 on S, we obtain

f5'+s (Xl gra’d X2—Xe grad Xl) .dS = 0.
On S Xl ~e"ikR'ﬂo __i_A(n) C_ikR/R,
X2 N_B(n) e"ikR/R
as R—oo0 where n is a unit vector in the direction of the point of observation and R = Rn.

Hence

lim | (y, grad y,—x,grady,).dS = —lim fi/c(l —n.n;) B(n) e ikR-ikR-% Rsin §dfdg.

R—>00d § R—>w

A use of a lemma proved elsewhere (Jones 1952¢) now shows that
lim | (x,grad y,—yx,grady,).dS = —47B(—n,).
R—>oJ §
Inside the hollow cylinder
Yo = e RI A 3 4, o(jonn/a) exp {—iz(fon/a* k%))
and hence
[ Gugrad i, —xograd ) .48 = —in@lh(R ~1) foo - 3 an(Gih/a" k) Son T3 )]
after a use of (10) and (11). Consequently, if we assume that f;,, = 0 (m>0), we have the

result _ 4iB(—n,)
Joo = k2R 1)

Now the average pressure on the end of the rod is

2 (e .
=1l “tu(t, 4, 0) dt = fon

and hence the average pressure on the end of the rod is
4iB(—n,)

FER—1)
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This result may be converted to a slightly different form by introducing the total field
xs which arises when a plane wave travelling in the direction n, impinges on the semi-
infinite hollow cylinder. As z——o0 inside the cylinder, when ka<(jg,,

X3 ~D(n) e,
together with terms from the non-symmetric modes; it may be shown by an argument
similar to that above that 4nB(—n,) = 2ikna®D(n,).

ka

Ficure 3. The average pressure amplitude on the end of the rod for
various angles of incidence.

Hence the average pressure on the end is 2D(n,;)/(1—R’). Now
R — — (KD (k)

and so the average pressure is 2(1—4,) D(n,) (39)

on account of (25) when we make the assumption that f,, = 0 (m>1).

Thus the assumptions that f;,, = 0 (m> 0) and that £,, = 0 (m>0) imply that the average
pressure on the end is the product of the average pressure when the angle of incidence is 7
and the complex amplitude of the symmetric mode produced inside the semi-infinite hollow
cylinder by the same incident plane wave. The assumptions are not likely to give good results

Vol. 247. A. ‘ 64
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516 D. S. JONES ON THE SCATTERING OF A SCALAR WAVE

outside of the range ka<1-84, because outside of this range the effect of non-symmetric
modes will become important. Nevertheless, the results for an angle of incidence of 7
suggest that our approximation will give qualitatively accurate information and that the
quantitative result will not be in error by more than 109, (considerably less for ka<<1)
in the range ka < 1-84. The average pressure when £a >4 may be estimated by the methods
of geometrical optics when the incident wave ‘illuminates’ the end of the rod.

The average pressure amplitude determined by (39) is plotted against £« in figure 3.
It can be seen that when the incident wave ‘illuminates’ the end of the rod the average
pressure amplitude has a maximum greater than 1 which, however, becomes smaller and
occurs closer to ka = 0 as the angle of incidence decreases from 7 to m. For angles of
incidence less than 37 no maximum occurs away from ka = 0—the amplitude drops steadily
as ka increases. Although it has been anticipated above that the approximation is only
qualitatively correct for ka > 1-84 it will be found that average pressure amplitude calculated
by geometrical optics for 6 = 120°, 150° (ka>=4) joins on quite smoothly to the values
obtained by our approximation in 0 <<ka<3-5.

6. VARIATIONAL EXPRESSIONS
The equations (20), (25) and (32) may all be included in the system

by(0) = Tpa,(0), (40)
where the repeated suffix implies summation, provided that the symbols are suitably inter-
preted; for example, for (20)

b,(0) = 1/(k,,+ikcosl), a,(0) = «,,
Tyy = 0+ 1/ (K Kpg) -
The same quantities may be used for (25) on the understanding that # and » are zero. Note
that 7, is independent of ¢.
Let A, ) = a,0) b (m—¥);
then A(0, ¢) gives the series required in (36), (37) and also an expression for f, after a use

of (25), when the convention in the preceding paragraph is used.
It follows from (40) that

A(0,9) = a,(0) Typa,(m—4)
=b,(0)a,(m—9), since T, =T,
=A(n—y,m—0).
It is easily verified that the convergence requirements of the above process are satisfied
by the types of solution under consideration. Therefore

@,(0) by(m—y) a,(m—4) b,(0)
Ab,y) = A(m—o,m—0) = 224 L L7, 41
(0,9) = A(n—,n—0) BT (41)
Now make a small variation da, in ¢, in such a way that the infinite series involving da
remain small. Then the corresponding change §4 in 4 is given by
da,(0) b,(n—4) da,(m—y) b,(0) — A(0, ) da,(0) T, da,(m— )
{a4(0) +-0a,(0)} T ypa, (m—¥) 4 da, (m %)}

04 =
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when (40) is used. Hence, the first variation of 4(6, ) as given by (41) is zero when (40)
is satisfied. Conversely, it is easy to show that if the first variation of 4(6, ) as determined
by (41) vanishes for arbitrary variations of the a, the equations (40) must be satisfied.

Consequently, if we substitute the appropriate values of 4,, T,, and a, in (41) we obtain
expressions for the distant fields required in (36) and (37) and for f§, whose first variations
are zero for small variations of «,,, 7,, and g, about their correct values. Variational
expressions are capable of giving reasonably accurate results from rough approximations
to the unknowns (examples involving integrals will be found in Levine & Schwinger
(19485) and Marcuvitz (1951)), but, as has already been stated, no advantage of this has
been taken in this paper.

Suppose now that 7}, is real and that b, is real and independent of §. Then a,(0) is real
and independent of . Therefore a,(0) = a,(m—y) = a, and

(0a,T,,a,)?—(0a,T,,da,) (a,T,a )

qCIl’

(a,+0a,) T, ,(a,+da,)

04 =

This form shows that §4<C0 if (7") is positive definite and thus that formula (41) always
underestimates 4 in these circumstances.

Consider, in particular, equations (32). When £a is small these equations may be
approximated by (see §7)

2y 1 < _ Vnm
= — r=1,92, ... 42
jnr’g’przlr Jur mgl Jar +.]nm ( 7 ) ’ ( )

where #,, = lim L (4,,) and the series required in (37) becomes, on omission of the part
ka—0

independent of the summation,

Vm
. 43
mgl Jnm ( )
Thus bp = l/jnpa Y;q = (.]njz +an) -1 + 25qunp$%p: (44)

so that 7, is real and b, is real and independent of §. Hence a, is real and independent of 6.
Also

D0 @

T,00,—2 3 +3 3 Al (45)

P—ljnpgnp b= 1q—1]np+.]nq

Since Z,, ~j}, from (A14), as p—oco the first series in (45) converges and is obviously
positive if a, = o(p7*) as p—o0. With regard to the second series we observe that the series

Za e~m' is absolutely and uniformly convergent for 0<{t<o0 if a, = o(p~!) as p—oo0.

p=1
o/ w . 2
[*(5 o) a
0 \p=1

Hence the second series is equal to
which is a positive quantity. Hence, for all choices of the a, such that a, = o(p~!) as p—o0,
(T) is positive definite. In particular this is true of the a, corresponding to solutions of (42)
since the required solutions are those such that a, = O( #) (see §3). Thus any choice of
the a,, satisfying the above condition, in (41) gives a lower bound to the series (43).

64-2
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518 D. S. JONES ON THE SCATTERING OF A SCALAR WAVE

If, now, we choose a,=c, (p<P),
=0 (p>P)a
P
where b,= 2 Tyc, (p=12,...,P),
p=1

Consequently we can obtain a lower bound to (43) by solving the first P equations of (32)
with y,,, = 0 (m> P) and substituting the values derived thereby in the first P terms of (43).

An application of this theory to the corresponding problem in the theory of the thick
plate (Jones 1953 @) enables us to improve the estimate made of the series in § 4 of that paper.
For we now see that 0-170, the sum of the first four terms, is a definite lower bound for the
sum of the whole series. Combining this result with the upper bound obtained in that
paper we see that the sum lies between 0-170 and 0-189. Hence the sum of the series (40)
in the work referred to is —0-114 with a maximum error of 5 %,.

7. THE DISTANT FIELD WHEN £a<<1

In this section we shall consider the approximations which can be made when ka<<1 and
the boundary condition is « = 0. When £a<1,

Lo = (Jum/@) {1+ 0(R?e?)} and LY (A,,) =2, {1+0(1)}.
Hence equations (32) become approximately
2y 1 oY
”.‘**ﬂ":*.—“'— —“ﬂ‘— :]. 2,..., 46)
It e B T (
from which we deduce that y,,, = constant+o(1) (all m).
From the definition (30) we find that
¥ = O(k"a") (n+0)
= O[{In (kasin0)}~*] (n=0)
and, from (A 15) and (A 16),
| LY(—ikcosy) = O(1) (n0)
= [—In ($kasiny) ) {1+0(1)} (n=0).
When we recall the definition of #?’ we see that if terms of O(£24?) are neglected the only

field, apart from the incident field, which needs to be considered at a distance from the
origin is that in which » = 0. Hence the distant field in p>a is obtained from

U0 — 4 4-uy(p, z) — u(O)_u(Z)_{_i. ctie R (s) HE? (kp)

o), HP(k2) ez ds. (47)


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
1~

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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Let RO(s) be the value of Ry(s) when y,, = 0 (all m). Then, for values of s such that
|sa| <1,
Rys)es (1 § Yom | ez
YLD (s)  \s+1kcosl ;2 s+,
= {(s+ikcosf)1—{}e=
= {1 —(s+ikcosl) {} e** (s+ikcos ) !
_ RO
0 LP(s)

esz—(s+ikcos 6)§’ (48)

where g = § yOm/AOm'
m=1

Now, in determining the distant field from the integral of (47) the only part of the
contour which is significant is that near the saddle-point and, in that neighbourhood,
| sa| = O(ka). Hence we may substitute for Ry(s) in (47) from (48). But the integrand is
now, apart from the term involving {, just that which occurs in the diffraction by a semi-
infinite hollow cylinder. The effect of the { term is to maké the semi-infinite hollow cylinder
occupy the position p = a, —c0 <z<{.

Thus the field at a point some distance from the end of the rod is the same as that at the
point when a semi-infinite hollow cylinder of the same diameter but longer by an amount

(= Z Yom i subject to the same incident field.

To estlmate { we have solved the first two of equations (46) under the assumption that
Yom = 0 (m>2). We find y,, = 0-178, 7o, = 0:075 and hence 7,,/Ay; +Vgo/Ags = 0-0872a.
Therefore our approximation to { is 0-087a. It follows from the theory at the end of the
preceding section that this approximate value is below the true value of {. A like approxi-
mation in the theory of the thick plate is about 10 %, low, and if we assume that the same is
true here it would appear that { is very nearly 0-1a.

It follows that, to the degree of approximation adopted above, the rod behaves, as far as
the distant field is concerned, as a hollow cylinder longer by an amount 0-1a. This result,
being independent of ¢, holds for any incident field which can be constructed from a
spectrum of plane waves.

In determining y,, and y,, it is necessary to compute £, i.e.

JOr 111{21 ) o(t)}
exp-X f 2 +Jor d¢
from (A 13).

Part of the computation was carried out by Mr D. F. Ferguson. The results are
| Py = 06318 and Z,, — 0-423.

A similar result when the boundary condition is du/dv = 0 does not hold. It can be shown
that for any given n the distant field behaves as that due to a slightly longer hollow cylinder
(together with a doublet at the origin when n = 0), but there seems to be no reason why the
additional length should be independent of #. Indeed, if we reject terms of O(k%a%) it is
necessary to retain the field of both n = 0 and » = 1, since both %’ and #{ are O(k%2a2?),
and so the rod behaves as a slightly longer tube only if the lengths associated with n = 0,
n = 1 are the same. Now, taking as a first approximation only ¢, «,; and «,, as non-zero,
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520 D. S. JONES ON THE SCATTERING OF A SCALAR WAVE

we find ay, = (1+4cosf)~! so that «, is dependent on #, whereas «,, is not. Hence the
additional lengths for n = 0, n = 1 will be different in general and the rod will not behave
as a slightly longer tube.

8. THE PRESSURE ON THE ROD DUE TO A PRESSURE PULSE

The analysis in the preceding sections has dealt entirely with the case of a harmonic
incident plane wave, but from it can be deduced results concerning the effects when a
pulse is incident on a rigid rod. We shall consider only sound pulses and restrict the analysis
to the case when the pulse meets the end of the rod head-on, i.e. the angle of incidence is 7.

Let p,, the pressure in the incident sound pulse, be given by

po = H(t+2/a,),

where ¢, is the speed of sound, ¢ is the time and H(x) is the Heaviside unit function. On
taking a Laplace transform with respect to ¢ we obtain

| mewdt=jgy e (2(g)>0).

If now we put ¢/a, = ik the incident wave is the same as that of § 2, apart from the factor
1/q and the transform of the total pressure satisfies (1) (# (k) <0 since%(q) > 0). The normal
derivative of the transform of the total pressure vanishes on the surface of the rod since the
normal derivative of the total pressure is zero there. The problem is consequently the same
as that of § 2. It follows from § 5 that the transform of the average pressure on the end of

the rod is 2{1—By(q)}/g,

where B(q) is the value of f, when expressed in terms of g. Hence the average pressure on
the end of the rod at time ¢ (>0) is

1 d+io

— {1—B,(q)}etdg/qg (d>0).

MJ g—iw

The integrand has a simple pole at ¢ = 0 with residue 4 since f, = 4 when ka = 0. Thus the
above integral may be written as

1 fiw
Lt ] = Bolg)}edaly.

Put ¢ = ika, = iaa,/a, where & = ka and T = a,t/a, so that 7" = 1 corresponds to the time
taken by a sound wave to travel a distance equal to the radius of the rod. Then the average
pressure on the end of the rod is

1 [* 1—24, iaT
1+2—7T]._J\__00 a € d(x,

where f, is the same function of « as that obtained by solving equations (25).
Now f, has already been determined approximately in § 5 when a> 0. Let the value of

f, so obtained be given by 2(1—f,) — F(a) +iG(a).
Then, when « <0, 2(1—4,) = F(—a)—iG(—a),
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and hence the average pressure on the end of the rod is

1431 f :i [{F(0) — 1)sina T+ G(w) cos T da. (49)

TABLE 1. THE AVERAGE PRESSURE AT VARIOUS TIMES

T T
0 1-974 2 0-915
3 1-616 3 0-991
1 1-294 4 1-005
$ 1-038
I
1-5 ]
0-8 L
5

Ficure 4. The average pressure on the end of the rod with an incident pressure pulse.

The way that F(«) behaves for <10 can be seen from figure 2 since ¢, = F(a)+1; the
behaviour of G(x) may be deduced from figures 1 and 2 since figure 1 shows (F2+G?).
The values of Fand G have not been computed for > 10, butitis clear from the figures that,
in this range, we can take F(a) = 2 and G(a) = 0. This approximation should not produce
an error of more than 5%, On introducing this approximation the average pressure on
the end of the rod becomes

326 10Ty 42 | °L F(0) sinaT+G(a) cosaT}da (50)
2 7 mly @ ’

oot
where Si (x) = %ﬂ——f i%l—f dx. This formula gives the correct value of 1 as 7"—c0.
X

The integral was calculated by replacing F and G by parabolic approximations over the
intervals (0, 3), (4, 1), .... The results thus obtained are shown in table 1 and figure 4.
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522 D. S. JONES ON THE SCATTERING OF A SCALAR WAVE

The pressure drops rapidly to its final value of 1, differing by less than 10 %, from this
value for 77> 2. It can be seen that the approximation described above is justified. The cor-
rect value at 7" = 0 should be 2 (which differs from the approximate value by 3 %), since
just after the incident wave hits the end of the rod the pressure in the neighbourhood of the
end is the same as when a pulse is reflected at a plane wall. The waves diffracted from the
edges then spread across the end reducing the pressure rapidly, and it appears that by the
time (7 = 2) these waves produce diffracted waves the average pressure is not greatly
different from its final value.

It may be noted that the average pressure in 0<< 7°<<2, as given by table 1, is equal to

{0-915+0-745(2 — T2}
correct to within 1 9%,.

The computation necessary for table 1 was carried out by Mr D. F. Ferguson.

The foregoing theory applies to the semi-infinite rod, but the values obtained for the
pressure will continue to hold for a rod of finite length until the waves diffracted at the second
end reach the first end. Thus, if the rod is of length /, the average pressure given by (49)
and (50) will be correct for 0<< T'< 2//a.

Itis clear also that we may insert a rigid plane along ¢ = 0 without affecting our solution;
we thus obtain the pressure on an obstacle of semicircular cross-section placed on the
ground due to a pressure pulse travelling along the ground.

9. APPROXIMATE EVALUATION OF THE ‘SPLIT’ FUNCTIONS

The quantities K% («,,,) (m = 0,1,2) have been computed on the Manchester Digital
Computer and the results are shown in table 2. The analysis, including a method for
computing infinite integrals, necessary to convert K into a form suitable for the com-
puter, was carried out by Mr A. M. Turing. The subsequent routine was programmed for
the Digital Computer by Mr R. A. Brooker. Details of their work appear in a separate
paper (Brooker & Turing, unpublished).

Some values of K (k,,) have been given in graphical form by Levine & Schwinger
(19484). The values we obtain agree, apart from one exception, with those of Levine &
Schwinger to the accuracy with which the graph can be read. The exception is [, , (£ o is
defined by (51) and (53) below); we obtain 0-6128i, whereas Levine & Schwinger give
0-61331.

Various approximate results were required in the preceding analysis and also provided
a useful check on the computation; these are obtained in the following work. When £, = 0
we have from (A1)

InKP(w) =~ 2 f In{_ﬂ”{}(KaBng)/(K“)}ds
To -

where w lies to the right of the contour I'y which goes from —ico toico to the right of ik

and to the left of i£.
The zeros of Jj(ka) in the negative half-plane lie to the left of I'; and those of the positive

half-plane to the right. After rotating the complex plane through a right angle and replacing

ka by « we obtain
| L] M B

In K9 (w
t—aw e im
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TABLE 2
K (ik) K (k1) Kg!"oz)
ka "% 7 @R Y & s
0 1 0 0-4533 -0 0-3594 -0
0-25 0-9747 —0-1501 4556 —0-0003 -3604 —0-0001
05 -9078 2747 -4618 -0021 -3631 -0009
0-75 -8180 -3654 4715 -0066 -3671 -0028
1 0-7206 —0-4235 0-4836 —0-0147 0-3721 —0-0061
1-25 6252 4541 4976 0272 -3778 -0110
15 -5375 4634 -5124 0449 -3837 0177
175 -4601 4568 -5270 -0687 -3894 0264
2 0-3942 —0-4391 0-5395 —0-0996 0-3946 —0-0371
2:25 -3394 -4139 -5476 -1385 -3986 -0500
2:5 -2952 -3839 -5480 -1858 -4008 -0649
2-75 -2606 -3510 -5356 2413 -4001 -0819
3 0-2348 . —0-3163 0-5028 —0-3026 0-3954 —0-1004
3-25 2173 -2799 -4378 -3624 -3850 1196
35 -2086 -2405 -3206 -3982 -3657 -1376
375 2145 -1888 -1101 -3080 -3275 -1483
4 0-2867 —0-1903 0-3440 —0-1148 0-3145 —0-0976
4-25 -2900 2208 -3761 -2052 3331 ‘0884
4.5 -2790 2391 -3553 -2531 -3488 -0902
4-75 -2625 -2493 -3223 -2768 -3628 -0989
5 0-2439 —0-2532 0-2880 —0-2851 0-3748 —0-1137
525 -2253 -2518 -2562 -2831 -3837 1344
55 2078 2464 -2286 2742 -3878 -1608
575 -1922 -2376 -2055 -2606 -3846 -1929
6 0-1789 —0-2260 0-1870 —0-2437 0-3705 —0-2294
6-25 -1684 -2119 -1733 -2244 -3399 -2676
65 1612 1954 -1644 -2026 -2842 -2997
675 -1588 -1750 1616 -1770 -1886 -3030
7 0-1705 —0-1388 0-1749 —0-1328 0-0167 —0-1197
7-25 -2068 -1640 -2202 1614 -2805 1131
7-5 -2054 -1801 2194 -1809 -2921 -1750
775 -1982 -1901 2111 -1930 -2750 -2088
8 0-1884 —0-1957 0-1997 —0-1998 0-2507 —0-2256
8-25 -1776 -1978 -1872 -2024 -2258 2313
8:5 -1668 -1970 1748 -2015 -2029 2295
875 -1565 -1937 -1631 1977 -1831 2225
9 0-1473 —0-1882 0-1527 —0-1915 0-1666 —0-2119
9-25 -1395 -1809 -1439 -1832 -1536 -1987
95 ‘1334 1717 1372 -1730 -1443 -1832
975 -1298 -1604 -1332 -1604 -1391 -1654
10 0-1305 —0-1452 0-1338 —0-1437 0-1398 —0-1426

where I' is the contour in figure 5 and /(a2 —#2) = ei"i /(2 —a?), /(2 —a?) being equal to
ae ¥ when ¢ = 0.
-0t o

r
Fi1cure 5

We may also obtain a similar result by rotating the s-plane through a nght angle in the
opposite direction. An addition of the two formulae gives

In K9 (w) = 2 ln[ —miJ{J/ (“;—th;};vlj‘”{J (2> —1*)}] dt,

the points iaw and —iaw lying above and below I' respectively.

Vol. 247. A. 65
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524 D. S. JONES ON THE SCATTERING OF A SCALAR WAVE

We write In K9 (k,,) = iaky, L, ,, (51)
_ In[—miJi{y (az—tz)}H PV (@ =)}
where l,,= o f P dz. (52)

The zeros of J; which lie above I' are given by ¢ = i /(j;2 —«?), where

JUs—a?) = J(g—a) i ji>a?,
=iJ(@—ja) i @
(It will be assumed that there is no x such that jo, = @.) The branch lines from these points
(except —a) are drawn to make a small angle with the negative real axis; the branch line
from —a is taken along the negative real axis. The contour is then deformed into the upper
half-plane over the branch lines. The contributions from the branch lines (except that from
t = —a) are easily evaluated and we obtain

L Rln [K,(u) {K,(u) +inl (u )}]udu]
[a,v_’}ll_lgo [2+ zRa, ( Oﬂ)+2ﬂ1f (u2_'_] )(a2+u2) ’
where
Jon<R<ymirs Sze ) = e PriL() and K,(2) = —dmie b mHP (zetm).

The quantity R, , is defined by
2F5(joy) Re,(Jop) = 13 (Joys Jov) (
= = —1Fy(Jo Jo,) (
= —mi+2itan~ {F(50,) (F5(J0)} (U

Jop=Jow=)s
o, >>Jou =),
0> %>J0y)

= —2tan~"{F(jo,) [ F3(Jo,)} (Jov>2>Jg,),
= Fz(jéﬂ,J'6V> (@0, >Jo,)
= —mi—Fy( Jo, j(;/l,) (o >]0,u >Jov)s
= ”“77“‘11“{4 Joz—02) [jocy (Jox =Jov>),
= —In{4(e®—jg}) o} (Jou =Jov<),
where F(a,b) = In[{/(a®>—a?) +/(6*—a?) }*/(a®—0b7)],
Fy(a, b) = In[{{/(«* — a?) +/(a®—b?) }*/(b*—a?)],
and Fy(a) = /| a®—a?|.
Let L, hn;] (53)

and R, , = limR then

ocv’

] IO v hm z {Rac V(JOﬂ) RO,v(j(l)/t)}

m—>w ///—

._L_f“’ {‘_j_{_ }ln [K, () {K, (u) il (w)}] 4
2mJo (a2 +u?)t U247z

An integration by parts converts this into a formula derived by Turing a different way and

which is fundamental to his method of calculating Z, ,. This formula is

oc,v( ) S V( )
L=ty =1lim 8 (R, =Roulisd 5], ik o ot gy &

m—>0 ﬂ—*
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where 2Fy(Jou) Sa,» (1) = — Fy(in; Ji,) (@=70,)
= —2tan~{F;(jo,) [ F3(in)}  (Jo, =),
and So,(u) = (1joy) {tan™" (u/fo,) — $7}.

Consider now the integral

f_:, u? 1ﬁ2ln{(%) e K, (u)} du,

where £ is real and positive and the line of integration lies below the branch lines. The
contour may be deformed to infinity in the lower half-plane, the only contribution being
from the pole # = —if. Hence the integral is equal to

i 1n{(?7.7é’)*e—m—w Ky(pehm)|.

But the integral may also be written, by changing the sign of the variable in the range

(—00,0), as
f‘” v e K, (u) dut.
o u2+£2 1K, (u) +nl;(u)
Hence f: = -th-ﬁZ In iKléZl)I‘(f‘lz’Z{; (u) du — miln {(gé’)% e(%n—ﬂ)iHil)(/g)} )

This formula was obtained by a different process by Levine & Schwinger (1948 ¢, equation
(V.37)).

Therefore, on taking the imaginary part of both sides, we have

[ tptan 21 du = fala [ (3(8) + O (54)

In particular it follows, by allowing f—c0, that

. -1 (u)
jo utan~! b~ 7l () du = 16’ (55)
and, by allowing f— 0, that
1o K
L  tan L) du = §mln (2/ne), (56)

where ¢ is a small positive number.
Now
’
I % R Ioc, v

M1 y . 1 (®utan™! {K )/ml (u)}
=1 1 1
- 2 +‘@ IuglRoc,v(]O/t) +£1“g)1 4Soc,v(€) + 27Tf (u2 +j 0‘2 +u2 d :I

where M is the smallest integer such that jg,, >« and jj,,>jg,. If « is large we may replace
(o®+u?) 7 by 1/a—4$u?/oa3 when u takes moderate values. When u is large

tan= {K,(u)/n],(u)} = O(e~2),
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so that the error in taking the same form for (a?-+42)~* when u is large will produce a negli-
gible error in the integral in /; ,. Hence, for large o,
! M 3 ]- 3
Ioc,v = %_}_’@ ZlRoc, 0(]0/&) ——-*0“‘11'1 770‘*”-_5; (VZO) (57)

=1 Q?MAR on) + 35, ,(0 3 () Loy In {1mys, Y2(J 0 58

”*74— /ﬂzl oc,v(](),u)+1 oc,v( )——@_3—1—1& +§0;§ n{EWJOv 1(]01))} (V:*: )9 ( )
when use is made of (54), (55) and (56).

It was found that the values of 1, , obtained from (57) and (58) differed from the com-
puted value by less than 1 9%, when «> 2.

The above approximation is of course valueless in the range a<<1. For this range an
approximation may be derived by starting from (52) and observing that

I LN N T
Lo=ga) o Ry
_ L fruan @)Y (@) g

mlo (Joy—u?) (&2 —u?)?

when <y,

On using the expansions for Bessel functions of small argument we find that, for small «,

I~ =26 (+0) (59)
~Hotielnatd—19)e) (= 0), (60)

where y = 0-5772 ... is Euler’s constant.

The author gratefully acknowledges the considerable debt he owes the late Mr A. M.
Turing, F.R.S., and Mr R. A. Brooker for their work in the computation involved in
this paper; he is also indebted to Mr D. F. Ferguson for additional computation.

APPENDIX
By applying Cauchy’s theorem to the contour C in figure 6 it is easy to show that,
since J,(ka) HP'(ka) has no zeros in —k;<o <k, (the proof that H?'(z) has no zeros for
0>arg z> —m is similar to that given by Watson (1944) for H?(z)),

1 otien {—miJ,) (ka) HP' (ka)} ds

In K (w) z_%@f ) ) (A1)
oatio ln £ — i @
In K (1) — __%gf +. In { mjr;(_/iaz)anZ (ka)} ds, (A2)

where in the first integral Z(w) >0y, —k; <0, <k, and, in the second, Z(w) <o,, —k; <o, <k,
and the symbol 2 indicates that the integral is to be calculated as the limit when both ends
of the contour tend to the infinity at the same time (see Pearson 1953). It follows that

In K (w) +In K (—w) = 0,
and hence that KP(w) KP(—w) = 1. (A3)
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By a process similar to that described at the beginning of § 8 we obtain

inKpp(u) = % [ =G OV HE =)

where « = £a.
When |wa |>1 we have

In K () — 2“1 2LAE=a R KB} 404 001 wa ),

N t2 + a2w2
ik/

P

where N is a fixed large number. In the integral we can use the asymptotic formulae for
the Bessel functions and hence

FIGURE 6

(n) N_
In K§ (w) f tszwz de-+ 0(! 40 [wa )
~—21In (aw)+0(! allnlwa!)
Therefore K@ (w) ~(aw)"*{l +0(|70£ﬂ In | wa !)} (A4)
as | wa | o0 in the positive half-plane.
When ka0 and aw— W (=0) it is clear that
W (*In{—2L,(1) K, ()}
(n) —_

n K () > fo o (A5)
and KP(w) = 0(1). (Ae)
If w = —ik cos ¥ this formula does not hold ; in this case

o —iecosy (e In[—md {/(a?—2)} H?'{/(«®>—?)}] .
In K (w) = o . P a2 cos? dt+0(a), (A7)

where ¢ is a fixed small quantity greater than « and the contour passes above &, —acos
and below —a, acosy. When 740 this may be approximated by

_iacosy ¢ In{— n(n+1)/(a2—t2)}dt
o J_. 2—a2cos?y

=3In{—n(n+1)/a?}+0(1).
Hence, as a0, K®(—ikcosy) ~constant/a (n==0). (A8)



http://rsta.royalsocietypublishing.org/

s |
I \

a4
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

528 D. S. JONES ON THE SCATTERING OF A SCALAR WAVE
When n = 0 the right-hand side of (A7) is O(«) and so
K (—ikcosy)~1. (A9)

The split functions corresponding to L(s) may be dealt with in a similar way. We have

, 1 ovtioIn {—miJ (ka) H? (ka
In g (w) = 2—ﬂiﬂfm_iw { S(_*uz (K@)} 4 (A 10)
and Ly (w) LP(—w) = 1. (A11)
Note that LY (w) = K (w).
The asymptotic behaviour is given by
1
L%Kw)~(m@”%bf%0(Paﬂln]wa0} (A12)

as | wa | oo in the positive half-plane. Also when k¢ — 0 and wa—W (=0)

() [ In{22,(¢) K, (4)}
qumﬁyﬂ oy dt (A13)
and LP(w) = O(1). (A14)
If w = —ik cos y we obtain
LY (—ikcosy)~0(1) (n=40) (A15)
~{—In (3kasiny)} (n=0) (A1e6)
as ka—0.
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